Monthly Archives

août 2017

Digital-émois Intelligence Artificielle

Rencontre avec le machine learning

digital-emois.fr

La démocratisation des technologies Big Data donne accès à des puissances de traitement considérables qui permettent de traiter des volumes de données ahurissant. Mais, les data aussi volumineuses soient elles, n’ont de valeur qu’accompagnées d’analyses et c’est là tout l’apport du machine learning, de l’apprentissage automatique.

 

Machine à prédire

Avec le machine learning, la machine arrive à apprendre toute seule grâce aux données sans être explicitement programmées pour cela. Le Machine Learning construit des mécanismes prédictifs à partir d’observations passées. Cette démarche présuppose l’existence d’un mécanisme causal. Ainsi, pour prédire un phénomène, il existe deux solutions :

  • élaborer un modèle explicatif en se basant sur la compréhension du mécanisme causal. Cette démarche est menée par les scientifiques.
  • mettre en évidence des corrélations significatives dans un jeu d’observations, c’est-à-dire trouver un modèle prédictif. Le Machine learning, tout comme les statistiques utilisent cette démarche.

Machine basée sur l’apprentissage

Pour faire fonctionner le machine learning, il existe différents types d’apprentissage dont les 2 principaux sont :

  • L’apprentissage supervisé

On donne aux machines un modèle (« teacher ») duquel elles apprennent.

Pour qu’un programme apprenne à reconnaître une voiture, par exemple, on le nourrit de dizaines de milliers d’images de voitures, étiquetées comme telles. Cette technique est relativement ancienne, mais elle a fait un bond avec les récentes avancées technologiques.

La masse de données désormais disponibles ainsi que la puissance de calcul à disposition des ingénieurs multiplient l’efficacité des algorithmes. Ce type d’apprentissage est courant et fait déjà parti de notre quotidien avec par exemple les outils de traduction automatique.

  • L’apprentissage non-supervisé

Si l’apprentissage supervisé revient à construire un modèle de corrélation entre 2 ou plusieurs variables a priori connues – l’apprentissage non supervisé va prendre en compte l’ensemble des variables d’un problème et va en extraire les corrélations les plus fortes. Ce qui est bien plus puissant car cela va au-delà des préjugés humains et met en relief des corrélations cachées qu’aucun d’entre nous n’aurait pu imaginer.

Pour le marketing, le machine learning va plus loin que la simple utilisation de données pour mieux cibler. Il apprend des réponses, des comportements des clients ou prospects.  Avez-vous reconnu votre précieux assistant, bras droit de demain ?